

Charge-on-the-move for the UK Transport application

A National Power Infrastructure

Doros Nicolaides *May 2016*

Prof John Miles

The Big-picture synopsis

- A big-picture review
- Inductive power transfer devices
- Is it based on a suitable engineering sustainable context?
- Is it technically and economically feasible at national scale?
 - Environmentally liable
 - Socially responsible
 - Technically feasible
 - Economically possible

Adapted from Qualcomm at http://www.qualcommhalo.com/

Power supply

Wireless power

Base pad

Vehicle pad

Battery

On board controller

Solution Schemes

Cost model

- Purchase and installation of wireless chargers
- Cables
- Feeder stations
 - Circuit breaker
 - Connection switchgear and protection/metering
 - Transformers
- Sub-stations
 - Isolator- Circuit breaker
 - Rectifiers / Transformers

- Connections
 - Wireless connections
 - Physical connections
- Cable trenching
- Distribution designing fees
- Civil engineering fees

The Big-picture outcome

- Motorways
- Rural 'A' roads

← 600mm fore-aft misalignment & 0.14 kWh/mile

➤ 100% of car-miles

The Big-picture outcome

System Characterisation

- A. Power requirements of electric cars
 - Advanced Vehicle Simulator Advisor¹
 - Based on ARTEMIS driving profiles

	Motorway (kW)	Rural (kW)
Average car	24.0	11.0

- B. Motor flow statistics² number of cars per mile by road class and region
- C. Share of EVs by 2050 (high, moderate, and basic uptake)
 - High uptake: 90% of car market by 2050

- 1. National Renewable Energy Laboratory for the United States Department of Energy
- 2. Department for Transport Road traffic statistics 2014

Additional power requirement for the UK

Motorways of London (high uptake in 2050)

Overall power requirements (peak GW)

	Motorway	Rural 'A'	Total
England	2.8	2.0	4.8
Wales	0.1	0.2	0.3
Scotland	0.2	0.3	0.5
Total	3.1	2.5	5.6

Installed capacity in the UK³

- 76 GW in 2010
- 130 GW in 2050

3. Pathways to 2050: Three possible UK energy strategies, British Pugwash 2013

Charge-on-the-move simulation tool

Select drive cycle Number of cycles	A	Artemis Motorway 80 mph Driving Cycle Details			
Select vehicle	R	Real compact car			
Battery			Charging units		
Capacity (6 Ah)	14	cells in parallel	Distance (meters)	10	
Module (10.7 V)	25	modules in series	Segment length (meters)	4.5	
Initial SOC	1		Power rating (kW)	50	
	Lock ver	licle mass			
Run					

Optimal Layout – MECR for motorways

MECR: Mean Effective Charging Ratio (mWh/metre)

Conclusions - Suggestions

Power infrastructure

- Tools and procedures to determine performance requirements
- Average power requirements of electric cars 5.6 GW additional load
- Charge-on-the-move simulation tool
- Determine charging layouts to achieve specific MECR

'Big-picture' review

- Great potential for the transport application
- A nationwide charging infrastructure looks highly possible

Charge-on-the-move cost in context

- Motorways
- Rural 'A' roads

CO₂ emissions reduction

- HS2: High Speed 2 is a new high-speed rail network in the UK
- Resulting around 3 MtCO₂e savings during the first 60 years⁴
- 85.6% electrification of car-miles could result up to 44 MtCO₂ in a year

<u>52%</u> for passenger cars X <u>117</u> MtCO₂ for transport in 2013 X= **61** MtCO₂

Conventional car (European target <u>95</u> gCO₂/km): **153 gCO₂/mile**

Electric car: 0.2 kWh/mile X 100 gCO₂/kWh = 20 gCO₂/mile

85.6% electrification X 87% reduction from electric cars X 61 MtCO₂ = 44 MtCO₂

4. HS2 and the environment - Environmental Audit Committee, UK parliament website

Thank you

